\qquad

1) Find the determinant of the matrix below. (15 points)

$$
\begin{gathered}
{\left[\begin{array}{ccc}
0 & 2 & 0 \\
0 & 4 \\
0 & 2 & 0 \\
3 & 0 & 6
\end{array}\right]} \\
1 \\
-1
\end{gathered} 1
$$

2) Given the basis and vector \vec{x}_{B} below, find \vec{x}_{S}. (10 points)

$$
\begin{aligned}
& B=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
5
\end{array}\right]\right\} \quad \vec{x}_{B}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& \vec{x}_{S}=2\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3\left[\begin{array}{l}
0 \\
5
\end{array}\right]=\left[\begin{array}{c}
2 \\
19
\end{array}\right]
\end{aligned}
$$

3) Given the two bases below, find the change of basis matrix that converts information from coordinate vectors in B_{2} to coordinate vectors in B_{1}, denoted by $[I]_{B_{2}}^{B_{1}}$. You do not need to perform the arithmetic. (10 points)

$$
\begin{gathered}
B_{1}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\} \quad B_{2}=\left\{\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]\right\} \\
{[I]_{B_{2}}^{B_{1}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & 1 \\
3 & 2 & 0
\end{array}\right]^{-1}\left[\begin{array}{lll}
5 & 1 & 1 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]}
\end{gathered}
$$

4) Answer the questions below (3 points each)
(A) Let A be a 2×2 matrix with $|A|=0$. How many solutions does $A \vec{x}=\overrightarrow{0}$ have?
∞
(B) Let A be a 2×2 matrix with $|A|=1$. What is the rank of A ?

2
(C) Let A be a 5×7 matrix with $\operatorname{dim}(N S(A))=3$. When row reduced, how many pivots does A have?

4
(D) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{5}$ be a one-to-one linear transformation with corresponding matrix A. When A is row reduced, how many rows of zeroes does it have?

3
(E) Suppose $A \vec{x}=\vec{b}$ is a system of equations that does not have a solution. If A is 4×5, what is the minimum number of free variables in the system of equations.
5) Given the system of equations below, use Cramer's Rule to write down a formula for the solution. You do not need to simplify or evaluate your answer(s). (10 points)

$$
\begin{gathered}
3 x+2 y=5 \\
4 x-6 y=7 \\
x=\frac{\left|\begin{array}{cc}
5 & 2 \\
7 & -6
\end{array}\right|}{\left|\begin{array}{cc}
3 & 2 \\
4 & -6
\end{array}\right|} \quad y=\frac{\left|\begin{array}{cc}
3 & 5 \\
4 & 7
\end{array}\right|}{\left|\begin{array}{cc}
3 & 2 \\
4 & -6
\end{array}\right|}
\end{gathered}
$$

The following row reduction may be useful for these problems.

$$
\left[\begin{array}{ccc}
2 & 3 & 1 \\
2 & 4 & -2 \\
1 & 1 & 2
\end{array}\right] \sim_{R}\left[\begin{array}{ccc}
1 & 0 & 5 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right]
$$

6) Are the vectors below linearly indepent or linearly dependent? Justify your answer.
(10 points. 3 for the answer; 7 for the reasoning)

$$
\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right] \text {, and }\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right]
$$

They are linearly dependent. We see from the row reduced matrix that the third column does not have a pivot. That means that the information provided in that vector is redundant.
7) Is the linear transformation below one-to-one? Justify your answer.
(10 points. 3 for the answer; 7 for the reasoning)

$$
T(\vec{x})=\left[\begin{array}{ccc}
2 & 3 & 1 \\
2 & 4 & -2 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

The linear transformation T is not one-to-one. We see from the row reduced matrix that the third column does not have a pivot, meaning that the same linear combinations can be obtained in multiple ways.
8) Find the product below. (10 points)

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ccc}
2 & 4 & 5 \\
-1 & 0 & 2
\end{array}\right]} \\
{\left[\begin{array}{ccc}
0 & 4 & 9 \\
2 & 12 & 23
\end{array}\right]}
\end{gathered}
$$

9) Find length of the vector below. (5 points)

$$
\begin{gathered}
{\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right]} \\
\left\|\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right]\right\|=\sqrt{9+16+1}=\sqrt{26}
\end{gathered}
$$

10) Given the system of equations below, identify which variable(s) are leading and which variable(s) are free. (5 points)

$$
\begin{array}{r}
2 x+3 z=7 \\
4 y-8 z=6
\end{array}
$$

x and y are leading. z is free.

